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1. The fundamental difference between hardware and software reliability 

considerations 

To be willing to apply computer technology fully to avionics or other 

critical applications, one would have to be convinced that the computer 

systems supplied, including both hardware and software, were more reliable 

than the extensively tested manual/hydraulic/electronic systems which the 

computer systems were to replace. 

will not be easy. Although quite challenging, the purely hardware 

aspect of this problem is probably manageable by appropriately adapting 

present hardware reliability determination techniques to complex digital 

electronics. Software, however, is another matter, in part because we 

lack even an adequate conceptual framework for assessing software relia- 

bility in any quantitative way. It is therefore not at all clear how to 

proceed in trying to certify the 'flight-worthiness' of any given software 

module or system. 

certification will continue to grow. 

this informal note will attempt to make a few points which may help 

clarify some of the very vexing problems that will inevitably confront 

certification agencies as they struggle pragmatically with the software 

enigma. 

To attain and defend this conviction 

Nevertheless, it is obvious that pressures for such 

Leaping in where angels fear to fly, 

The first assertion I would like to make is that software reliability 

is a matter qualitatively different from hardware reliability. 

attempts, of which there have been many, to apply concepts drawn from hard- 

ware reliability theory to software tend to mask rather than clarify the 

problems that must be faced in trying to assure the reliability of soft- 

ware systems. Hardware reliability theory assumes that the hardware 

systems which it considers malfunction and decay stochastically. Among 

Consequently 
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other things, this leads to a notion of (preventive) maintenance: 

predicting a system's pattern of decay toward failure, and by arresting 

this decay in its earliest stages, one can aim to keep a system operating 

close to its normal condition for extended periods of time. 

assumed is in effect a process of stochastic wear. 

None of these concepts apply to software. 

.by 

The decay 

This is shown by the fact 

that all computer centers schedule periodic preventative maintenance of 

their hardware systems, but that none would dream of scheduling software 

systems for maintenance which was either periodic or 'preventative'. 

Indeed, if one knew what tests to apply during such 'preventative' 

maintenance, one would apply them before initial system release; once 

these tests were passed, they would never have to be applied again unless 

the software changed. 

A simple thought-experiment serves to emphasize this point. Suppose 

I am about to board a (computer controlled) aircraft. If I am told that 

its hardware has just been checked over by a skilled mechanic, who has 

just replaced every slightly defective part, I will board it with increased 

confidence. However, if I am told that its software has just been checked 

over by a skilled programmer, who has just replaced every slightly defective 

subprocedure, my desire not to board for a considerable period of time will 

be overwhelming. 

2. 'Design faults' and 'discontinuous behavior' in software reliability 

Part of the reason for the fundamental difference in attitude revealed 

by the preceding reflection lies in the fact that software failures are not 

consequences of wear; rather, they are encounters with design faults. (Here 

'design' is used in a sense including 'implementation'.) Another thought- 

. 



-3- 

experiment can help clarify this point. 

ordinary sort might justify the statement that the probability of an aircraft 

suddenly failing in flight is less than-lo-’. 

to undercut the confidence which such an estimate seems t o  justify. To do 

so,  we have only to transpose, into the hardware realm, the type of failure 

characteristic of software. Suppose, for example, that I assert of the 

commercial airliner CD744 that if simultaneously 

A stochastic reliability model of the 

It is, however, not hard 

(a) 

(b) Its airspeed is x and the turning radius is R ;  

(c) The ambient air pressure is exactly p ; 

Its flaps and rudder are in a particular condition; 

then its aerodynamic design is such that it w i l l  go into an unrecoverable 

stall. 

are narrowly defined, but that they lie somewhere in the range of normal 

commercial operation.) 

reason that this catastrophic failure mode has not been observed is that 

the listed parameters never simultaneously took on these critical values, 

either in the hundreds of hours of precertification testing to which the 

aircraft was originally subjected, or during the tens of thousands of 

hours of commercial use that it has logged subsequently. If this assertion 

is believed plausible, then the overwhelming part of the probability that 

the CD744 should fail suddenly in flight coincides with the probability 

that it should wander into the ‘design fault’ parameter region described 

above. 

clearly much larger than (and also qualitatively different from) the 

hypothetical lo-’ which a standard stochastic failure model might yield. 

(It is assumed here that these hypothetical failure parameters 

Suppose that I assert in addition that the only 

Whatever number one cares to ascribe to this probability, it is 
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Thus our willingness to regard the number produced by a stochastic 

failure model as a quantity that is at all significant rests on an unspoken 

major premise: that hardware simply does not fail in this discontinuous 

way, i.e. that the behavior of hardware does not depend upon its control 

parameters in a manner characterized by sudden, sharp breaks. 

we expect the response of physical systems to their control parameters to 

be monotone increasing in some ranges, monotone decreasing in others. 

Therefore we believe that, by testing the response at a limited number of 

points, we can at least bound their response at untested points. 

out the possibility of unsuspected narrow 'pitfalls'. 

on encountering such pitfalls that software fails. 

Put differently, 

This rules 

But it is precisely 

3 .  Software failures 

Thus the rate at which software fails is not at all the consequence 

of a stochastic wear process. Rather, it reflects the rate at which design 

pitfalls present in the software from its inception are encountered as 

execution traverses the state space of a given program. 

on the manner in which execution wanders through the logical space S of 

states of the program. 

This rate depends 

To visualize this situation, one can think of S as a k-parameter 

space of some kind, and think of the faults in it as stones scattered 

through the body of a cake. A s  execution proceeds it will traverse S 

in a manner that is partly random, and may occasionally collide with a 

fault. 

removing the fault without introducing any new errors. 

this carefully controlled kind can progressively reduce the density of 

the faults remaining in the region of the logical space 

When this happens, a very carefully controlled fix may succeed in 

Repeated fixes of 

S which the 

. 
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usage generated by a particular application regularly traverses. 

other hand, faults in untraversed program regions will simply remain, and 

will only reveal themselves when usage shifts into some new region of the 

space S . Finally, any change made in a program P from which faults 

have been removed by subjecting 

repair will re-introduce a new scattering of faults which will be as 

difficult to remove as faults present from the beginning. Changes which 

are uncontrolled or which have global logical effects are particularly 

likely to have this degrading effect. 

On the 

P to extensive varied usage and repeated 

These remarks correspond t o  two common observations concerning soft- 

ware errors: 

(i) Errors are particularly likely to occur just after a program 

has been modified. 

(ii) Whenever the pattern in which a program is used shifts 

significantly, design faults that have remained latent within it (perhaps 

for extended periods) are likely to reveal themselves in particularly 

large numbers. 

Normal software test and maintenance procedures reflect some of these 

observations. 

systematically varied use, e.g. by insisting that every line of code 

must be executed by the tests, and that the test must force all conditional 

branches to be taken in both of their two possible directions. Test 

Careful testing will always try to subject a program to 

libraries are generally preserved so that they can be reapplied as 

'regression' tests whenever a code has been modified in any way. Finally, 

the experienced programmer will never remove any test code that has proved 

useful from a program's source text, since he knows that it may become 

necessary to revert to development-phase diagnostic activities whenever 
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a shift in usage pattern has revealed the presence of some hitherto 

unsuspected design fault. 

Note that this conceptual model of the process of software failure 

differs in several very essential regards from the normal model of hard- 

ware failure. In no sense do we think of program usage as introducing 

faults into a program by any statistical process of wear or decay; thus 

program use in a fixed or relatively fixed pattern does not test it in 

the same way that protracted use would test hardware. Finally, our model 

leaves no room for any notion of 'preventative' software maintenance. 

4 .  Detecting and eliminating discontinuous failures in complex designs 

Our limited ability to deal successfully with errors in software 

systems was seen in the preceding section to trace to the inherently 

discontinuous nature of these errors. To fight against these limits one 

must 

(a) 

(b) 

Reduce the initial likelihood of such errors creeping in; 

Improve the effectiveness of methods for detecting hidden 

logical discontinuities; 

(c) 'Smooth out' these logical.faults, if some way to do this can 

be found; 

(d) Stabilize software as much as possible, to ensure that new 

faults do not creep into a system from which prior faults have been 

slowly and expensively removed. 

I will now comment on various approaches which these remarks suggest. 

(a) Preventing logical errors 

Typical errors in software systems arrange themselves along a 

spectrum from superficial 'blunders' to deep-lying misapprehensions 



-7- 

concerning the logical/mathematical behavior of a complex algorithm. 

typical blunder might be the misspelling of a variable name or the use of 

the value of a quantity where a pointer t o  the quantity is really required. 

Improper treatment of marginal cases, for example empty arrays, full arrays, 

or internal quantities which have reached their maximum allowed limits, 

forms an important, and often persistent, intermediate category of errors. 

Misunderstandings concerning the correct form of an algorithm can be 

particularly troublesome during program development, but their crippling 

effects are normally so pervasive that they tend to be corrected before a 

program comes into operational use. 

A 

In certifying software for avionics applications one will be 

concerned principally with faults capable of surviving a period of careful 

and systematic testing. Such testing is likely to detect most simple 

blunders, but some fraction of such blunders can creep through, and one 

will therefore be concerned to reduce their number as much as possible. 

The best way of doing this is to subject the text of a program to 

redundancy requirements upon which programmed static checks can be based. 

In particular, the use of a strongly-typed language ought t o  be insisted 

on. It is even desirable to carry the typing of variables which such 

languages support even further, e.g. by allowing a programmer to declare 

more refined logical types than the basic types of the language being 

used (for example, variables characterized by their physical dimensions), 

and to declare the pattern in which operations apply to objects of this 

type, and also the types of results returned. A computer can then examine 

for these and other types of errors, for example potentially uninitialized 

variables. 
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(ii) Blunders creep into code in proportion to the length of the 

code, and their numbers rise with the degree of technical artifice which 

the code employs. It is possible to diminish both the length and the 

artificiality of code by writing initial versions of it in a suitable 

very high level language, and by transforming this initial version into 

a final production version via mechanical or semi-mechanical steps whose 

likelihood of correctness can be kept high. 

is to check mechanically for certain types of formal correspondence 

between a very high level primary code version and a production version 

which is supposedly equivalent to this primary code. In effect, this 

uses the very high level version as a tool for securing redundancy along 

a logical dimension too sophisticated to be reached by more primitive type- 

declarations.) 

be useful in other ways also, for example in facilitating the work of 

'tiger teams' conducting adversary code audits, and also in stabilizing 

at least some version of a code which may have to be adapted to changing 

hardware environments. 

(Another possibility here 

Later we will see that such a very high level code version can 

(iii) Very systematic testing of code, e.g. strict application of 

the rule that it must all be exercised, that all branches must be taken in 

both directions, that a variable should receive data at each of its points 

of use from all its potential points of definition, etc., can probably 

eliminate the great majority of superficial blunders. This leaves errors 

of moderate logical depth, e.g. mishandling of marginal cases, as the 

likeliest source of failure in a code that has been very carefully 

developed and tested. Very systematic testing should also eliminate many 

of the errors of this class. On the other hand, a substantial fraction 

of such errors must be expected to survive even quite thorough testing, 
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especially if these errors strike only in peculiar combinations of circum- 

stances. Though it is not at all clear how to smoke out errors which are 

even this deeply concealed, we will try later to suggest a pragmatic tech- 

nique which might afford some substantial level of protection against cata- 

strophic surprises. 

(iv) To rule out errors which are deeper than type errors, failures 

to initialize or to update, and other equally superficial faults, one 

needs to penetrate into a program's logic. 

tools and methods, for example the apparatus of checkable proof which 

mathematical logic supplies, would have to be used. 

the likelihood that such techniques can be applied successfully. 

Formal proofs of program correctness 

To do this, formal mathematical 

We now turn to assess 

Techniques for proving programs mathematically correct are known, and 

after some decades of work are just beginning to result in systems that 

are more than laboratory playthings. One can, therefore, hope to use 

such techniques to guarantee the correctness of programs to be used in 

critical applications. However, in spite of the steadily increasing 

importance of this approach, it does not appear likely to play more 

than a secondary role during the next few decades. 

tions support this guardedly pessimistic judgment. 

The following observa- 

(i) In the literature on formal proofs of program correctness, one 

finds references to two significantly different levels of proof, which are 

not always distinguished as carefully as they should be. 

machine-checked proofs on the one hand, and detailed manual reasoning, 

resembling mathematical proofs of the kind ordinarily published, on the 

other. Proofs of the first kind are still extremely expensive, and have 

been carried out in only a very few cases. Moreover, there is reason to 

These are fully 
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believe that, in some of the numerical areas with which avionic software 

will have to deal, formal proof techniques will be particularly hard to 

apply. On the other hand, proofs that are not machine-checked but only 

verified manually do not give any enormously high degree of protection 

against failure, since incorrect handling of marginal cases, which is 

a crucial kind of program fault, tends also to be ubiquitous in ordinary 

mathematical proof. Thus manually verified proof can best be regarded 

as a semi-formal technique that can help an adversary 'tiger team' (of 

the kind to be discussed below) to smoke out errors that would otherwise 

be overlooked. However, if it is to play this role it is essential that 

the verification formalism used should retain intuitive clarity rather 

than dissolving into a repellent cloud of obscure formal details. 

a verification formalism properly designed to assist manual verification 

would have to have quite a different flavor from one intended as a 

component of a fully computer-checked system. No existing verification 

system seems to have been designed with this requirement in mind. 

Thus 

(ii) Programs often fail because of some discrepancy between a clean 

mathematical notion and the considerably more painful mass of detail used 

to represent this notion within a computer. Failures are, for example, 

often associated with overflows of data fields, discrepancies between true 

integer arithmetic and its approximate (one's or two's complement) computer 

representation, etc. While not impossible, it would be particularly 

tedious to bring material of this sort into a formal framework of mathe- 

matical proof. 
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(iii) This last problem becomes particularly acute in the case of 

real arithmetic, in which connection there arises a yet more fundamental 

problem. 

mations used in numerical analysis are simply not known, and hence we are 

not in position t o  give formal proofs either of the correctness of these 

approximations or of systems which rely upon them. 

In most cases precise mathematical justification of the approxi- 

(iv) Overall, it must be admitted that, to make formal proofs of 

program correctness available on any substantial scale, a challenging 

technology, of which at present we possess only some basic principles, 

would have to be put into place. Techniquesreducing the presently 

enormous cost and tedium of checking proofs by machine would have to 

be developed very greatly. Systems for managing rigidly locked libraries 

of formally verified program fragments would be required. 

methods for minimizing the amount of source text that had to be reprocessed 

every time some part of a software system has been changed would have to 

be found. We are beginning to understand how to do all these things, and 

this technology deserves to be patiently yet vigorously cultivated. Even 

so,  it appears unlikely that it will develop enough in the next few years 

to withstand the shock of substantial practical use. Thus program proving 

can be regarded as a useful auxiliary tool in justifying the airworthiness 

of software, but by no means an exclusive, and probably not even an 

entirely central, tool. 

Practical 

(b) Detecting pitfalls 

If not by formal mathematical proof of correctness, then how 

can potential errors in complex, discontinuous logical systems be detected? 

Two methods, one of which has already been mentioned, suggest themselves. 
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These are 

(b.i) Subjecting the systems to as wide and as varied use as possible 

before the system is used in any critical application. 

(b.ii) Subjecting the system to close and rigorous examination by 

groups of skilled adversaries, i.e. 'tiger teams'. 

Under (b.i), one's principal aim must be to secure very varied use, 

An ideal would be rather than extensive but relatively stereotyped use. 

to use systems or system elements known to be identical in a great variety 

of very different applications, a few critical, but most non-critical. 

Given this pattern of usage it would be reasonable to hope that the first 

appearance of any remaining design fault would be in some non-critical 

application rather than in a critical one. Then, assuming that error- 

reporting was rapid and centrally managed, one could hope that enough lead- 

time would be gained to prevent future errors from affecting any critical 

situation. 

Suppose, to be more specific, that such complex and central systems 

facilities as process control or interprocessor communications came to 

be resident on a fixed, mass-produced chip which came into wide use for 

household and office systems, plant automation, ground transport applica- 

tions, and so forth. Then it would be highly desirable to use these very 

same components in avionics applications, as their non-avionics usage would 

then 'protect' the avionics use against unforeseen fault, in the manner 

just explained. 

ware components having both critical and non-critical applications, or, this 

lacking, rigid stabilization of systems whose long usage in a critical 

application affords something of this same kind of protection. 

The key here is rigid stabilization of hardware and soft- 
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'Tiger team' audit of software systems 

While by no means exhaustive, an adversary 'tiger team' audit of a 

software system is probably capable of smoking out numerous errors which 

would escape detection even by very systematic batteries of tests. 

Skilled and experienced tiger teams can in principle comprehend the logic 

of a program deeply enough to surmise the existence of and examine for  

many faults hidden in the interlocking logical mechanisms of a program. 

However, to be effective, such teams would have to operate in a 

spirit quite different from that of today's ordinary 'design walkthrough'. 

Such design walkthroughs are normally allotted very limited time and 

resources, and operate under the assumption that they will approve a 

software product, if not on a first examination, then at least after the 

second or the third examination. By contrast, a satisfactory adversary 

audit would require as much as or more time and manpower than went into 

system design and coding initially, and might well refuse to pass a 

system even after repeated examination. 

An audit team could refuse to approve a system for various reasons, 

including 

(i) Detected faults (which the audit team could list); 

(ii) Lack of fully adequate documentation, or non-transparent design, 

either of which left the audit team unable to assure itself that the 

system would work as claimed; 

(iii) Insufficient proof that the system supplied is precisely 

equivalent to that described by its supporting material; 

(iv) Inadequate testing. 
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Note that the possibility of rejection for reason (ii) might act 

strongly to encourage the development of systems from executable specifica- 

tions written in very high level languages. 

clarity and simplicity. 

libraries of important utility functions were available, the problem of 

obtaining certification for a complex system could be reduced by using 

these certified techniques, rather than entirely new methods, to imple- 

ment some of the functions required. 

This could conduce to design 

Moreover, if pre-certified very-high-level 

It may be that carefully organized adversary audits will develop as 

one of the principal methods for certifying the airworthiness of software. 

This would seem to be an area in which it would be appropriate to mount a 

few well-chosen experimental efforts. For example: 

(i) Two or more independent 'tiger teams' could be assigned to 

audit the same software systems. The extent to which their findings came 

to overlap (as the number of audited errors fell) might be taken as an 

indication of their joint thoroughness of audit. 

(ii) A system known to have reached good reliability might be 

subject, on the one hand to systematic testing in the ordinary sense, on 

the other hand to adversary audit, and the number and nature of errors 

detected by each of these two methods compared. 

Adversary audit groups may in time come to provide a specialized 

function analogous to that presently provided by firms of Certified Public 

Accountants, though of course they would operate in a very different 

technical area, and in one that was much more critical since loss of life 

rather than simple financial l o s s  was at stake. 
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A useful by-product of a successfully completed adversary audit 

might be a critical exposures list, i.e. a list of the hardware failures 

from which the software was unable to recover successfully. The availa- 

bility of such a list might improve the usefulness of hardware reliability 

assessments very substantially. 

Fault-tolerant software 

A s  a possible method for reducing the likelihood that software should 

fail catastrophically, the following suggestion for 'fault tolerant' soft- 

ware has been advanced. 

(i) Find points in a software system at which the validity of an 

intermediate result R can be checked fairly rapidly. 

(ii) Perform this check. If it fails, the code C producing the 

result R has malfunctioned. In this case, back up the system to 

exactly the status which it had before the code sequence C was executed. 

Then execute a different, but logically equivalent sequence C '  , i.e. 

one which produces the same result R ,  but in a different way. 

The thought here is that if the 'probability' x that C will fail is 
2 small, then the probability that both C and C '  will fail is x ; hence 

much smaller. The 'backup' necessary to support this scheme can be imple- 

mented at a very modest cost in speed, and by multiplying the size of 

memory required by a small integer factor. 

This approach has some arguable advantages, but for the following 

reasons is not entirely convincing. 

(a) The scheme's ability to recover is based upon the ability of C '  

to generate the acceptable result R that C did not produce. For this 

to be possible, the common input I to C and C '  must be valid; if 

it is not, then both C and C'  will fail, since this failure is caused 
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by undetected bad d a t a  suppl ied  t o  both of them. 

can t r y  t o  back up s t i l l  f u r t h e r ,  i .e .  t o  undo t h e  e f f e c t s  of t h e  code 

block C" executed j u s t  before  C and t r y  i t s  a l t e r n a t i v e .  But a 

scheme of t h i s  s o r t  r a p i d l y  grows complex, and i t s  execution-time c o s t  

rises at  least q u a d r a t i c a l l y  wi th  t h e  number of 'check p o i n t s '  which an 

e r r o r  has  passed before  t h e  occurrence of a l o g i c a l  incons is tency  i s  

de tec ted .  In a real-time system sub jec t  t o  f a i r l y  s t r i n g e n t  response- 

t i m e  requirements,  t h i s  r i s i n g  execution-time may be i n t o l e r a b l e ,  s i n c e  

i t  may guarantee t h a t  t h e  system w i l l  f a i l  whenever i t  backs up through 

more than a few l e v e l s .  

When t h i s  happens, one 

Thus our a b i l i t y  t o  make sof tware ' f a u l t  t o l e r a n t '  i n  t h e  sense 

descr ibed  depends on our  a b i l i t y  t o  s ta te  the  l o g i c a l  cond i t ions  upon 

which i t s  funct ioning depends f u l l y  enough t o  make i t  un l ike ly  t h a t  an  

e r r o r  can propagate undetected through s e v e r a l  success ive  checks. 

(b) Moreover, t he  ' f a u l t  t o l e r a n t '  approach i s  only p o s s i b l e  i f  t h e  

check-conditions t h a t  need t o  be v e r i f i e d  can be eva lua ted  r a p i d l y  enough 

not  t o  degrade system performance i n t o l e r a b l y .  

t a b l e s  are being manipulated,  and i f  system funct ioning  depends upon the  

g loba l  consis tency of t hese  t a b l e s ,  t h i s  may simply not  be poss ib l e .  

When such t a b l e s  are involved i t  may a l s o  be d i f f i c u l t  t o  des ign  an 

a l t e r n a t i v e  code sequence C '  t h a t  performs t h e  s a m e  l o g i c a l  func t ions  

as C bu t  i s  not  i d e n t i c a l  t o  C' . 

Espec ia l ly  i f  complex 

(c)  It can a l s o  be objected t h a t  t h e  ' f a u l t  t o l e r a n t  sof tware '  

2 approach does not  diminish t h e  p r o b a b i l i t y  of system f a i l u r e  t o  t h e  

l e v e l  claimed. 

if the  p r o b a b i l i t i e s  t h a t  C and C '  both f a i l  are independent.  To 

ensure  t h i s  independence, one can, f o r  example, i n s i s t  t h a t  t h e  codes 

x 

This  low f a i l u r e  p r o b a b i l i t y  estimate i s  only j u s t i f i e d  

__ - 
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n 

C and C '  should be developed by two different programming groups, 

workingindependently. However, even if this is done, errors in C and 

in C '  may not be independent. For example, both errors may trace back 

to points at which the common specification from which both C and C' 

were necessarily produced was ambiguous or incorrect. Moreover, we have 

seen that errors often trace to mishandled marginal cases or combinations 

thereof, and the very same touchy case which confused the authors of 

code C may have defeated the authors of C '  . 
A final comment on the 'fault tolerant' software approach is that 

every detected failure of a 'first-line' code sequence C will lead 

forthwith t o  the repair of C .  After such repair, C will presumably 

never fail in the same way again. Thus the backup software C'  provided 

for C has the function of protecting against events that happen just 

once, rather than of protecting against events that, due to wear, will 

happen infinitely often. 

and hardware reliability considerations. 

This again shows a difference between software 

(c) 'Smoothing out' logical pitfalls in complex systems 

Experience suggests that the points at which much-used software 

fails are often those points at which some internal table or data 

structure on which the software depends, but which is only indirectly 

related to the external physical situation which the software is managing, 

falls into some internally inconsistent condition. One plausible way of 

recovering from such situations when they are detected, especially in 

an avionics application whose sole purpose is to control physical hardware, 

is simply to terminate execution and to re-initialize completely, restarting 

all tables from their initial conditions. This would require that the soft- 

ware system must be capable of acquiring all the physical parameters which it 
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needs directly 

being managed, 

ab initio from 

to impose. If 

opens up. 

- 

from measurements that it can make on the physical system 

i.e. that all data necessary for control is recoverable 

the aircraft. This seems a reasonable design constraint 

it is accepted, then an attractive range of possibilities 

(i) To 'stress' the software system, it can be forced to re- 

initialize itself repeatedly, e.g. once each second during periods of 

experimental flight. This should succeed in exposing the system to many 

of the conditions which it would have to manage during a real software- 

fault induced re-initialization, and should make the immediate post- 

initialization operation of the system particularly reliable. Note that 

the kind of testing suggested uses the varying physical condition of the 

aircraft to expose the software to many different test conditions. 

(ii) One can run and compare several system versions, identical in 

their code but initiallzed at different moments, or one running continuously, 

the other frequently re-initialized in the manner suggested above. Any 

failure of these several software processes to transmit substantially 

the same controls to the aircraft effectuators would point to some 

potentially dangerous discontinuity. 

A system built according to this structural principle might operate 

as follows. Main-line software would transmit controls to the various 

physical subsystems aboard an aircraft. Subsidiary 'parasitic' software 

processes would monitor the activity of this main-line software system, 

verifying that the control signals it was generating always lay within 

reasonable ranges, that they kept the aircraft operating in a reasonable 

range, and that the main-line software was carrying out all its periodic 

activities on schedule. If any of these checks failed, an irmediate 
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status dump would be taken and saved for later examination; then the 

system would immediately be re-initialized, would re-acquire the data it 

needed, and would attempt to continue. Note that re-initialization will 

always involve re-acquisition of any currently active user-supplied command 

parameters. These parameters must therefore be held in non-volatile 

registers. If re-initialization is completely successful, no device 

control or control display should be lost for more than a fraction of a 

second; thus the system user need not be actively concerned with the fact 

that a software fault has interrupted operation, though of course each 

such incident should be reportable to the software maintenance group and 

their team of adversaries. 

Note that by insisting that avionics software systems be 'fully 

restartable' in the manner suggested, we are attempting to tie their 

behavior to the continuous responses of the physical systems which they 

regulate, thereby 'smoothing out' logical discontinuities which would 

otherwise allow catastrophic failures unpredictable by testing. Note also 

that the recovery scheme advanced bears some relationship to the 'fault 

tolerant' software notion discussed earlier. However, instead of relying 

on microscopic internal checks of result acceptability, we propose to 

monitor the software system's external behavior, and instead of trying 

to apply a restricted correction when a fault is detected we propose to 

take the cruder and more radical step of re-initializing completely. 

Moreover, instead of using an alternative code sequence to recover, we 

use the same code that has just failed, but change the data on which it 

is acting. 
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System re-initialization should also involve a series of fast checks 

to verify that all physical, control, and communication systems are in 

working order. 

can be programmed to report this failure and allow for operation in a 

suitable fallback mode. This suggests that ability to check rapidly for 

the operability of all subsystems may become a design requirement. 

If some subsystem is found to be inoperable, the software 

5. Stabilization of software systems 

The preceding discussion emphasizes the difficulty and high expense 

that will inevitably attach to attempts to guarantee the correct functioning 

of critical software. It follows that it will be important to stabilize 

this software when extensive usage and careful audit have brought it to 

a condition of high reliability. 

logical stabilization, since any uncontrolled change, even a 'small' one, 

is apt to reproduce the scattering of small hidden errors in which the 

danger of failure lies. 

Here stabilization must mean precise 

The following techniques might help to achieve the necessary level 

of stabilization. 

(a) Critical, and hopefully also complex, functions might be put 

Such hardware onto special-purpose chips which were then widely used. 

embodiments would guarantee precise identity of structure over a wide 

range of applications, aid modularity, and reduce the run-time cost of 

using standardized rather than hand-tailored software components. 

Typical candidates for such embodiments might be chips to manage a 
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priority queue of processes, to handle interprocessor communications in a 

standard way, etc. 

(b) Very-high-level library versions of common avionics functions 

Note that formal correctness-proof can be developed and pre-certified. 

methods will apply more easily to text of this kind than to more detail- 

ridden code. High-level, abstract program versions can serve as stable 

standards which can impart a useful degree of logical stability to 

production codes developed from them. A s  already noted, the availability 

of high-level libraries of standard algorithms can also facilitate the 

work of software audit teams. 

(c) Efforts can be made to develop other kinds of strictly re- 

usable software modules or packages. 

In particular, the following question could usefully be addressed: 

is it possible to develop any significant collection of software modules 

which can be used without change for a wide variety of aircraft? 


